“Monoclonal antibodies (mAbs) are a rapidly advancing class of therapeutic glycoproteins that possess wide clinical utility owing to their biocompatibility, high antigen specificity, and targeted immune stimulation. These therapeutic properties depend greatly on the composition of the immunoglobulin G structure, both in terms of primary sequence and post-translational modifications; however, large-scale production in cell culture often results in heterogeneous mixtures that can profoundly affect clinical safety and efficacy. This places a high demand on analytical methods that afford comprehensive structural characterization of mAbs to ensure their stringent quality control.”

Recent Publications

Resemann A, Jabs W, Wiechmann A, Wagner E, Colas O, et al. 2016. Full validation of therapeutic antibody sequences by middle-up mass measurements and middle-down protein sequencing. mAbs. 8(2):318–30
Dekker L, Wu S, Vanduijn M, Tolić N, Stingl C, et al. 2014. An integrated top-down and bottom-up proteomic approach to characterize the antigen-binding fragment of antibodies. Proteomics. 14(10):1239–48
Zhang H, Cui W, Gross ML. 2014. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Letters. 588(2):308–17
Tsybin YO, Fornelli L, Stoermer C, Luebeck M, Parra J, et al. 2011. Structural Analysis of Intact Monoclonal Antibodies by Electron Transfer Dissociation Mass Spectrometry. Anal. Chem. 83(23):8919–27